Interaction of the Neisseria gonorrhoeae PilA protein with the pilE promoter involves multiple sites on the DNA.

نویسندگان

  • C G Arvidson
  • M So
چکیده

PilA is the putative DNA-binding component of a two-component system that regulates transcription of the pilin expression locus (pilE) of Neisseria gonorrhoeae. Here we report the purification of the PilA protein and characterization of its DNA-binding activity. PilA was overproduced in Escherichia coli with an isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible expression vector. Cell extracts were prepared by sonication and fractionated by anion-exchange chromotography, followed by dye affinity chromatography with Cibacron Blue. Proteins were eluted by using a gradient of KCl, and PilA-containing fractions were identified by immunoblot analysis with a polyclonal anti-PilA antiserum. Purified PilA was judged to be > 90% pure, as determined by Coomassie blue staining and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. PilA purified in this manner was used to develop a gel retardation assay with a 301-bp fragment containing the pilE promoter (PpilE) and upstream sequences as a probe. A fragment of similar size containing the E. coli aroH promoter was used as a negative control. Competition experiments using a 100- to 1,000-fold excess of unlabelled DNA fragments confirmed the specificity of PilA binding to the pilE promoter. To localize the PilA binding site within the 301-bp PpilE fragment, stepwise deletions were generated by PCR and the fragments were examined in the gel shift assay. The results of these experiments show that there are two regions upstream of PpilE that are required for binding by PilA. Taken together, these data indicate that while PilA binds specifically to the upstream region of the pilE gene, this interaction is complex and likely involves multiple regions of this DNA sequence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role for both DNA and RNA in GTP hydrolysis by the Neisseria gonorrhoeae signal recognition particle receptor.

The prokaryotic signal recognition particle (SRP) targeting system is a complex of two proteins, FtsY and Ffh, and a 4.5S RNA that targets a subset of proteins to the cytoplasmic membrane cotranslationally. We previously showed that Neisseria gonorrhoeae PilA is the gonococcal FtsY homolog. In this work, we isolated the other two components of the gonococcal SRP, Ffh and 4.5S RNA, and character...

متن کامل

Neisseria gonorrhoeae PilA is an FtsY homolog.

The pilA gene of Neisseria gonorrhoeae was initially identified in a screen for transcriptional regulators of pilE, the expression locus for pilin, the major structural component of gonococcal pili. The predicted protein sequence for PilA has significant homology to two GTPases of the mammalian signal recognition particle (SRP), SRP54 and SRalpha. Homologs of SRP54 and SRalpha were subsequently...

متن کامل

Control of Neisseria gonorrhoeae pilin gene expression by environmental factors: involvement of the pilA/pilB regulatory genes.

The control of the expression of the pilin gene (pilE) in Neisseria gonorrhoeae under a wide variety of growth conditions has been studied. The expression of pilE was measured using transcriptional fusions between pilE and the gene encoding chloramphenicol acetyltransferase (CAT), and the level of pilin production was measured by Western blot analysis. Many of the conditions tested affected bot...

متن کامل

Transcription of a cis-acting, Noncoding, Small RNA Is Required for Pilin Antigenic Variation in Neisseria gonorrhoeae

The strict human pathogen Neisseria gonorrhoeae can utilize homologous recombination to generate antigenic variability in targets of immune surveillance. To evade the host immune response, N. gonorrhoeae promotes high frequency gene conversion events between many silent pilin copies and the expressed pilin locus (pilE), resulting in the production of variant pilin proteins. Previously, we ident...

متن کامل

Transcellular passage of Neisseria gonorrhoeae involves pilus phase variation.

Piliated and nonpiliated Neisseria gonorrhoeae organisms were added on top of confluent layers of HEC-1-B cells, each maintained on a microporous Transwell-COL membrane. The bacteria released into the lower chamber were characterized with respect to the following virulence determinants: pili, which mediate adherence to target host cells; PilE, the major pilus subunit protein; and PilC, which is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 177 9  شماره 

صفحات  -

تاریخ انتشار 1995